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The problem of dissociated and partially ionized gas flow around the frontal point of a body 
is considered. Various gases are supplied (injected) through the porous bodv surface into 
the laminar boundary layer. Correlation equations are obtained for the heat exchange 
parameter. 

A majority of authors [1-3] considered the boundary layer as a homogeneous gas or as a binary mix- 
ture in a theoretical investigation of the influence of an injected mass supply on the heat exchange and fric- 
tion. However, at temperatures of ~6 �9 103~ and above, when gas dissociation starts, and then ionization 
as well, the laminar boundary layer becomes a multicomponent layer. In this case the problem is com- 
plicated considerably. The most detailed investigations of the heat and mass exchange in a multicomponent 
mixture have been carried out in [4, 5]. On the basis of these investigations, the authors proposed a suffi- 
ciently simple engineering formula to compute the heat exchange: 

!a]ep) = 1 --0,65 9. (1) 
(~/%)0 

Other  s imple  re la t ionships  obtained in [6-8], which a r e  in pe r f ec t ly  s a t i s f ac to ry  a g r e e m e n t  with (1), can be 
used in addit ion to compute  the heat  and m a s s  exchange in the neighborhood of the forward  siagnation point. 
However ,  aI1 these  re la t ions  a r e  valid for  smal l  values of the injected gas consumption,  when G does not 
exceed 1.5. 

This  pape r  is devoted to an invest igat ion of the heat  exchange on a p e r m e a b l e  sur face  around which a 
pa r t i a l Iy  ionized gas flows in a broad  range  of var ia t ion  of G. 

The p rob l e m  of a mul t icomponent  l amina r  boundary l aye r  in w h ~ h  d ive r s e  phys icochemicaI  p r o c e s s e s  
p roceed ,  is solved in the flow of a pa r t i a l ly  ionized gas around a p e r m e a b l e  sur face  with coolant  de l ivered  
through it. Under such conditions the hea t  exchange on an i m p e r m e a b l e  su r face  has  a l r eady  been examined 
e a r l i e r  [9], and c r i t e r i a l  dependences have been obtained for  the heat  exchange p a r a m e t e r  in the absence  

of injection. 

This  invest igat ion is a continuation of [9]. The influence of gas blowing ( a i r - a i r ,  and n i t r o g e n - n i t r o -  
gen mix tu re s  a r e  cons idered  in par t i cu la r )  on the magnitude of the convect ive  heat  flux for high f r e e - s t r e a m  
enthalpies  and high values of the convect ive heat  flux is studied. The influence of injection on the rad iant  

flux is not cons idered  here in .  

The s ta t ionary  flow of an equi l ibr ium mul t icomponent  gas mix tu re  is desc r ibed  by the following s y s t e m  

of equations [9] using the effect ive gas p a r a m e t e r s :  

i) continuity equation for the mixture 

O-x- (pur) -b (pvr) = O; (2) 

2) momentum equation 
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Dependence of the d imens ion less  heat  Fig. i. 
flux q = (~/Cp)/(~/Cp) 0 (a) and the parameter 
A = [I (c~/cp)/(c~/Cp)0]/(Me/Mv) 0"25 (b) on the 
dimensionless coolant consumption. Air: i) T e 
= 6.103~ 2) 8.103; 3) 104; 4) 12.103; 5) 14.103; 
6) 15.103; nitrogen: 7) Te = 6 "I03~ 8) 8 "103; 
9) 104; i0) 12 .i03; Ii) 14.103; 12) data of N. A. 
Anfimov [4]; 13)data ofV. P. Mugalev [6]. 
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Fig.  2. Dependence of the p a r a m e t e r  A 
= [ 1 - ( c e / C p ) / ( ~ / C p ) o / ( M e / M v )  0-25 on G for  
l a rge  inject ions.  

~'~ 7x  + O~, y dx +-~y  \ oy / ' 

3) energy equation 

The boundary conditions a r e  the following: 

g = 0  u = 0 ;  v = 0 ;  I = I  w=const; (pv)w=const; 

g.-+ oo u.-+ ue; v = 0 ;  I - +  I e. 

The coordinate  x is he re  d i rec ted  along the body s u r -  
face ,  and the coordinate  y along its  normal .  

Using the t r ans fo rma t ion  

P~uor P-P-- dg, (5) 

0 0 

we reduce  the s y s t e m  (2)-(4) to a s y s t e m  of ord inary  
differential equations. 

The system (2)-(4) in the new independent vari- 
ables (5) now is: 

1) momentum equation 

1 (tf')' + W + ~ -  _ q')~ 0. (a) 

2) energy  equation 

The boundary value p rob lem is solved with the boundary conditions 

~ = 0  fw=const; f~ ,=0;  g = g w ;  

~ l + ~  ~ ' ( ~ ) ~ 1 ;  e ( ~ ) ~ ] .  (s) 

The sy s t em  of equations (6), (7) with the boundary conditions (8) was solved by a numer ica l  method.  

Computat ions of the heat  exchange f rom the hot gas to the wall  we re  p e r f o r m e d  for two cases .  

In the f i r s t  ca se ,  the heat  exchange was examined in the neighborhood of the forward  stagnation point 
of the p e r m e a b l e  body when a s t r e a m  of pa r t i a l ly  ionized a i r  flowed around this body. The thermodynamic  
and t r a n s p o r t  p r o p e r t i e s  of a i r  we re  taken f rom [10, 11]. The computat ions w e r e  c a r r i e d  out in a b road  
range  of var ia t ion  of the stagnation enthalpy (I 0 = (12.75-115) �9 103 (kJ /kg)) ;  both the d issoc ia t ion  domain 
(from T o = 6 �9 10~K), so that  the computed r e su l t s  on the heat  exchange could be compared  with the r e su l t s  
of o ther  authors  [4-6], and the ionization domain (to T o =15 .  103~ were  hence considered.  Ai r  with the 
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same thermodynamic and transport properties as in the free stream was used as coolant. This assured a 

more correct solution of the problem with injection in taking account of a multicomponent medium. In in- 

vestigating the heat exchange, the problem of high-temperature air flow around the frontal point of an im- 

permeable body was solved first in order to determine the generalized coefficient of heat exchange (a/Cp) 0 
in the absence of injection. The surface temperature was given as the boundary condition on the wall (T w 

= 1000~ and therefore, so was the gas enthalpy at the wall temperature (gw). Determination of the gen- 
eralized heat-exchange coefficient in the presence of injection (a/cp) was the next step in the solution. The 
surface temperature hence remained at T w = 1000~ The heat-exchange computations on a permeable sur- 
face were performed in a broad range of variation of the injection parameter (-fw = 0-2.0) since the coolant 
consumption is defined as 

I// ( d,,o. 1 (9) (pv)~ = -- f~ i t  [2~p w dx l o" 
Analogous computat ions  w e r e  c a r r i e d  out for  the case  of h i g h - t e m p e r a t u r e  ni t rogen,  whose thermodynamic  
and t r a n s p o r t  p r o p e r t i e s  w e r e  taken f rom [12, 13], flowing around the frontal  point of a p e r m e a b l e  body. 
In this c a s e ,  n i t rogen was used  as the coolant  injected through the porous  su r face  into the boundary layer .  

The r e su l t s  of computing the heat  exchange for  a i r  and ni t rogen in the p r e s e n c e  of injection a r e  p r e -  
sented in Fig.  l a .  P r e s e n t e d  in this f igure is the dependence of the d imens ion less  heat  flux q, or  (~/Cp) 
/ ( ~ / C p )  0, on the d imens ion less  inject ion p a r a m e t e r  G = (PV)w/(~/Cp) 0. I t  is seen  that the resu l t s  for  a i r  
and for  n i t rogen l ie on a single curve .  This  is explained by the fact  that the the rmodynamic  and t r a n s p o r t  
p r o p e r t i e s  of these gases ,  as  well  as  the molecu la r  weights ,  do not differ  radical ly .  Moreove r ,  it can be 
noted that  the higher the f r e e - s t r e a m  enthalpy (and the re fo re ,  the convect ive heat  flux as  well) ,  the g r ea t e r  
should the coolant  consumption be to p ro t ec t  the wall  f rom the hot gas.  As is seen  f rom Fig. l a ,  the curves  
of the dependence of the d imens ion less  hea t  flux q = ( ~ / C p ) / ( ~ / C p )  0 on G a r e  s t ra t i f ied  for d i f ferent  f r e e -  
s t r e a m  t e m p e r a t u r e s  (or enthalpies) .  This  is explained by the change in molecu la r  weight with t e m p e r a t u r e .  
If a c o r r e c t i o n  for  the molecu la r  weight is introduced in the f o r m  of the ra t io  (Me/Mv) ~ then all  the c o m -  
puted points  for  all  f r e e - s t r e a m  t e m p e r a t u r e s  l ie  well  on the single curve  (Fig. lb) .  The r e su l t s  of Mugalev 
[6] and of Anf imov and Al ' tov  [4], which l ie  well on this cu rve ,  a r e  superposed  here .  As is seen  f rom Fig. 
ib, the dependence of the dimensionless heat flux q on the dimensionless injection parameter G is linear in 
the domain of small injections (to G < 1.5), and can be represented for G < 1.5 as the following dependence: 

/ M ~o.25_ (~/%) -- 1 - -  0.67 .-e G (10) 

In the domain  of high coolant  consumpt ions ,  the dependence (~/Cp)/(oZ/Cp) 0 = f(G) (Fig. 2) can be r e p -  
r e sen ted  for  G _> 1.5 as  

_ _  . ( M e )  ~ (alcp) = l -- exp I2.303.10-i (-- 0.45 -}- 0.3G)I �9 (ii) 

In the ca se  of inject ion of a mix tu re  of gases  through a p e r m e a b l e  su r face ,  the dependences (4.1) and (4.2) 
obtained by Anf imov in [5] m u s t  be used.  
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NOTATION 

are the coordinates; 
are the velocity components, m/sec; 
is the density, kg/m3; 
is the pressure, bar; 
Is the temperature, ~ 
Is the mixture viscosity, kg/m-sec; 
is the molecular weight; 
is the total mixture enthalpy, kJ/kg; 
is the effective heat conduction coefficient, kW/m.~ 
is the effective specific heat, kJ/kg-~ 
is the effective Prandtl number; 
Is the compressibility parameter; 
Is the stream function; 
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fw = U/U, e 

(a/ep)0 = qw, 0/(I0-Iw) 

(a/Cp) = qw/(I0-Iw) 

qw,o 
qw 
q = qw/qw,0 = ( ~ / C p ) / ( ~ / e ) 0  
i2 = (pV)w/(a/cp) 0 P 

S u b s c r i p t s  

W 

e 
0 
eff 
V 
! 

is the dimensionless velocity; 
is the generalized coefficient of heat exchange in the absence of injection, 
kg / m  ~. see; 
is the generalized heat exchange coefficient in the presence of coolant in- 
jection, k g / m  2. sec; 
is the convective heat flux on an impermeable surface, kW/m2; 
is the convective heat flux on a permeable surface, kW/m2; 
is the dimensionless heat flux at the wall; 
is the dimensionless coolant consumption. 

denotes the wall; 
denotes the outer boundary; 
denotes the stagnation parameters ;  
denotes the effective total; 
denotes the injected gas; 
denotes the differentiation with respect  to the coordinate ~. 
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